RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2023 Volume 24, Issue 4, Pages 264–298 (Mi cheb1358)

Generalization of Goldbach's ternary problem with almost equal terms

Z. Kh. Rakhmonova, I. Allakovb, B. Kh. Abrayevb

a A. Dzhuraev Institute of Mathematics (Dushanbe)
b Termez State University (Uzbekistan, Termez)

Abstract: An asymptotic formula is obtained for the number of representations of a sufficiently large natural $N$ in the form $b_1p_1+b_2p_2+b_3p_3=N$ with the conditions
$$ \left|b_ip_i-\frac{N}3\right|\le H, H\ge (b_1b_2b_3)^\frac43N^\frac23(\ln N)^{60}, b_i\le(\ln N)^{B_i}, $$
where $b_1$, $b_2$ $b_3$, $N$ are pairwise coprime natural numbers, $B_i$ — arbitrary fixed positive numbers.

Keywords: ternary Goldbach problem, almost equal terms, short exponential sum with primes, small neighborhood of centers of major arcs.

UDC: 511. 344

Received: 20.06.2023
Accepted: 11.12.2023

DOI: 10.22405/2226-8383-2023-24-4-264-298



© Steklov Math. Inst. of RAS, 2024