RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2024 Volume 25, Issue 1, Pages 170–175 (Mi cheb1410)

BRIEF MESSAGE

On some product of $\mathrm{SM}$-groups

D. V. Gritsuk, A. A. Trofimuk

A. S. Pushkin Brest State University (Brest, Belarus)

Abstract: A subgroup $A$ of a group $G$ is called $\mathrm{tcc}$-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\le A$ and $Y\le T$ there exists an element $u\in \langle X,Y\rangle $ such that $XY^u\leq G$. The notation $H\le G $ means that $H$ is a subgroup of a group $G$. In this paper we proved that the class of all $\mathrm{SM}$-groups is closed under the product of $\mathrm{tcc}$-subgroups. Here an $\mathrm{SM}$-group is a group where each subnormal subgroup permutes with every maximal subgroup.

Keywords: factorizable group, $\mathrm{tcc}$-subgroup, $\mathrm{SM}$-group.

UDC: 512.542

Received: 11.12.2023
Accepted: 21.03.2024

DOI: 10.22405/2226-8383-2024-25-1-170-175



© Steklov Math. Inst. of RAS, 2024