RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2024 Volume 25, Issue 3, Pages 11–36 (Mi cheb1443)

On the simultaneous representation of numbers by the sum of five prime numbers

I. A. Allakov, B. Kh. Erdonov

Termez State University (Termez, Uzbekistan)

Abstract: Let $X-$be a sufficiently large real number, $b_{1},b_{2},b_{3}-$be integers with the condition $1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X, a_{ij}, (i=1,2,3; j=\overline{1.5})$ positive integers, $p_{1},...,p_{5}-$prime numbers. Let us set $B=max\{3|a_{ij}|\} , (i=1,2,3; j=\overline{1.5}), \vec{b} = (b_{1},b_{2},b_{3}), K=36\sqrt{3}B^{5}|\vec{b}|, E_{3,5}(X)=card\{b_{i} |1\le {{b}_{i}}\le X, b_{i}\neq a_{i1} p_{1}+\cdots+a_{i5} p_{5}, i=1,2,3\}$. In the paper it is proved that the system $b_{i}=a_{i1}p_{1}+\cdots+a_{i5}p_{5}, (i=1,2,3)$ is solvable in prime numbers $p_{1},\cdots,p_{5}$, for all triples $\vec{b}=(b_{1}, b_{2},b_{3}), 1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X$, with the exception of no more than $E_{3,5}(X)$ triples of them, and a lower bound is obtained for the $R(\vec{b})-$number of solutions of this system, that is, the inequality $R(\vec{b})>> K^{2-\varepsilon}( \log K)^{-5}$ is proved to be true, for all $(b_{1},b_{2},b_{3})$ with the exception of no more than $X^{3-\varepsilon}$ triples of them.

Keywords: estimate, positive solvability, congruent solvability, Euler's constant, effective constant, fixed number, prime number, system of linear equations, power estimate, comparisons.

UDC: 511.325

Received: 13.03.2024
Accepted: 04.09.2024

DOI: 10.22405/2226-8383-2024-25-3-11-36



© Steklov Math. Inst. of RAS, 2025