RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2024 Volume 25, Issue 4, Pages 120–137 (Mi cheb1477)

Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands

F. Z. Rahmonov

A. Dzhuraev Institute of Mathematics (Dushanbe)

Abstract: For $n \geq 3$, an asymptotic formula for the number of representations of a sufficiently large natural number $N$ in the form $p_1+p_2+m^n=N$, is obtained. Here $p_1$, $p_2$ are prime numbers, and $m$ is a natural number, satisfying the following conditions
$$ \left|p_k-\mu_kN\right|\le H, k=1,2, \left|m^n-\mu_3N\right|\le H, H\ge N^{1-\frac1{n(n-1)}}\mathscr{L}^{\frac{2^{n+1}}{n-1}+n-1}. $$


Keywords: Estermann problem, almost proportional summands, short exponential sum of G. Weyl, small neighborhood of centers of major arcs.

UDC: 511. 344

Received: 05.05.2024
Accepted: 24.12.2024

DOI: 10.22405/2226-8383-2024-25-4-120-137



© Steklov Math. Inst. of RAS, 2025