RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2025 Volume 26, Issue 1, Pages 142–148 (Mi cheb1521)

BRIEF MESSAGE

New bounds on Borsuk's problem in $\ell_p$-spaces

I. Ahmed

Moscow Institute of Physics and Technology (National Research University) (Moscow)

Abstract: In 2013, Andriy Bondarenko constructed a two-distance set on the unit sphere $S^{64} \subset \mathbb{R}^{65}$, consisting of 416 points that cannot be partitioned into 83 parts of smaller diameter. In this paper, we show that this construction works not only for the Euclidean space but for all $\ell_p$-spaces.

Keywords: Borsuk’s conjecture, Two-distance sets, Strongly regular graphs, $\ell_p$ spaces, Combinatorial geometry.

UDC: 514.17

Received: 06.12.2024
Accepted: 10.03.2025

DOI: 10.22405/2226-8383-2025-26-1-142-148



© Steklov Math. Inst. of RAS, 2025