RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2013 Volume 14, Issue 1, Pages 18–33 (Mi cheb255)

Asymptotical formula for fractional moments of some Dirichlet series

S. A. Gritsenko, L. N. Kurtova

Belgorod State University, Pobedy str., 85, Belgorod, 308015, Russia

Abstract: Let $v \in \mathbf{N}$. Let the function $\Phi(T)$ arbitrarily slow tend to $+\infty$ with $T \rightarrow +\infty $. The asymptotical formulas for fractional moments of the Riemann zeta-function $\int\limits_T^{2T}|\zeta(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\ln T}\le \sigma<1$ and for fractional moments of the arithmetical Dirichlet series of second degree from Selberg's class $\int\limits_T^{2T}|L(\sigma+it)|^{2/v}dt$ for ${1}/{2}+{\Phi(T)}/{\sqrt{\ln T}}\le \sigma<1$, are obtained.

UDC: 511

Received: 25.03.2013



© Steklov Math. Inst. of RAS, 2025