RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2015 Volume 16, Issue 3, Pages 339–354 (Mi cheb423)

This article is cited in 1 paper

Algebraic independence of certain almost polyadic series

V. Yu. Matveev

Moscow Institute of Electromechanics and Automation

Abstract: We study the arithmetic properties of almost polyadic numbers
$$\sum_{n=1}^\infty a_{i}\left(a_{i}+b_{i}\right)\ldots\left(a_{i}+\left(n-1\right)b_{i}\right),i=1,...,m,$$
where the numbers $a_{i},b_{i}\in\mathbb Z$, $\left(a_{i},b_{i}\right)=1$.
Bibliography: 15 titles.

Keywords: almost polyadic numbers.

UDC: 511.36

Received: 15.06.2015



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025