This article is cited in
2 papers
Estimates of short cubic double exponential sums with a long continuous summation
Z. Kh. Rakhmonov,
F. Z. Rakhmonov,
B. M. Zamonov Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
Abstract:
I. M. Vinogradov pioneered the study of short exponential sums with primes. For
$k=1$ using his method of estimating sums with primes, he obtained a non-trivial estimate for sums of the form
\begin{align*}
&S_k(\alpha ;x,y) = \sum_{x-y<n\le x} \Lambda(n) e(\alpha
n^k),\quad \alpha=\frac{a}{q}+\lambda,\quad
|\lambda|\le \frac{1}{q\tau},\quad
1\le q\le \tau
\end{align*}
when
$$
\exp(c(\ln \ln x)^2)\ll q \ll x^{1/3},\qquad
y>x^{2/3+\varepsilon},
$$
This estimate is based on “Vinogradov sieve” and for
$k=1$ utilizes estimates of short double exponential sums of the form
$$
J_k(\alpha;x,y,M,N)=\sum_{M<m\le 2M}a(m)\sum_{U<n\le 2N \atop x-y<mn\le x}b(n)e(\alpha (mn)^k),
$$
where
$a(m)$ and
$b(n)$ are arbitrary complex-valued functions,
$M$,
$N$ are positive integers,
$N\le U<2N$,
$x>x_0$,
$y$ are real numbers.
Later, B. Haselgrove, V. Statulyavichus, Pan Cheng-Dong and Pan Cheng-Biao, Zhan Tao obtained a nontrivial estimate for the sum
$S_1(\alpha;x,y)$,
$y\ge x^{\theta}$, where
$q$ was an arbitrary integer, and successfully proved an asymptotic formula for ternary Goldbach problem with almost equal summands satisfying
$|p_i-N/3|\le H$,
$ H=N^{\theta}$, respectively when
$$
\theta=\frac{63}{64}+\varepsilon, \qquad \frac{279}{308}+\varepsilon, \qquad \frac{2}{3}+\varepsilon ,\qquad \frac{5}{8}+\varepsilon.
$$
J. Liu and Zhan Tao studied the sum
$J_2(\alpha;x,y,M,N)$ and obtained a non-trivial estimate for the sum
$S_2(\alpha ;x,y)$ when
$y\ge x^{\frac{11}{16}+\varepsilon}$.
This paper is devoted to obtaining non-trivial estimates for the sum
$J_3(\alpha;x,y,M,N)$, with a “long” continuous summation over minor arcs.
Bibliography: 12 titles.
Keywords:
Short double exponential sums, nontrivial estimate, estimation method for short exponential sums over primes.
UDC:
511.524
Received: 09.12.2015
Accepted: 10.03.2016