RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2016 Volume 17, Issue 3, Pages 106–124 (Mi cheb500)

This article is cited in 8 papers

On number of zeros of the Riemann zeta function that lie in «almost all» very short intervals of neighborhood of the critical line

Do Duc Tam

National Research University "Belgorod State University"

Abstract: Proof (or disproof) of the Riemann hypothesis is the central problem of analytic number theory. By now it has not been solved.
In 1985 Karatsuba proved that for any $ 0 <\varepsilon <0,001 $, $ 0,5 <\sigma \leq 1 $, $ T> T_0 (\varepsilon)> 0 $ and $ H = T ^ { 27/82 + \varepsilon} $ in the rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + H) $, $ 1 + i (T + H) $, $ 1 + iT $ contains no more than $ cH / (\sigma-0,5) $ zeros of $ \zeta (s) $. Thereby A.A. Karatsuba significantly strengthened the classical theorem J. Littlewood's.
Decrease in magnitude of $H$ for individual rectangle has not been obtained. However, by solving this problem «on average», in 1989 L.V. Kiseleva proved that for «almost all» $ T $ in the interval $ [X, X + X ^ {11/12 + \varepsilon}] $, $ X> X_0 (\varepsilon) $ in rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + X ^ \varepsilon) $, $ 1 + i (T + X ^ \varepsilon) $, $ 1 + iT $ contains no more than $ O (X ^ \varepsilon / (\sigma-0,5)) $ zeros of $ \zeta (s) $.
In this article, we obtain a result of this kind, but for «almost all » $ T $ in the interval $ [X, X + X ^ {7/8 + \varepsilon}] $.
Bibliography: 23 titles.

Keywords: zeta function, non-trivial zeros, critical line.

UDC: 511

Received: 11.06.2016
Accepted: 13.09.2016



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024