RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2018 Volume 19, Issue 2, Pages 80–89 (Mi cheb640)

This article is cited in 12 papers

On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type

D. V. Gorbachev, I. A. Martyanov

Tula State University

Abstract: For $0<p<\infty$, we investigate the interrelation between the Nikolskii constant for trigonometric polynomials of order at most $n$
$$ \mathcal{C}(n,p)=\sup_{T_{n}\ne 0}\frac{\|T_{n}\|_{\infty}}{\|T_{n}\|_{p}} $$
and the Nikolskii constant for entire functions of exponential type at most $1$
$$ \mathcal{L}(p)=\sup_{f\ne 0}\frac{\|f\|_{\infty}}{\|f\|_{p}}. $$

Recently E. Levin and D. Lubinsky have proved that
$$ \mathcal{C}(n,p)=\mathcal{L}(p)n^{1/p}(1+o(1)),\quad n\to \infty. $$
M. Ganzburg and S. Tikhonov have extend this result on the case of Nikolskii–Bernstein constants.
We prove inequalities
$$ n^{1/p}\mathcal{L}(p)\le \mathcal{C}(n,p)\le (n+\lceil p^{-1}\rceil)^{1/p}\mathcal{L}(p),\quad n\in \mathbb{Z}_{+},\quad 0<p<\infty, $$
which improve the result of Levin and Lubinsky. The proof follows our old approach based on properties of the integral Fejer kernel. Using this approach we proved earlier estimates for $p=1$
$$ n\mathcal{L}(1)\le \mathcal{C}(n,1)\le (n+1)\mathcal{L}(1). $$

Using such inequalities, we can estimate the constant $\mathcal{L}(p)$ solving approximately $\mathcal{C}(n,p)$ for large $n$. To do this we use recent results of V. Arestov and M. Deikalova, who expressed the Nikolskii constant $\mathcal{C}(n,p)$ using the algebraic polynomial $\rho_{n}$ that deviates least from zero in the space $L^{p}$ on the segment $[-1,1]$ with the weight $(1-t)v(t)$, where $v(t)=(1-t^{2})^{-1/2}$ is the Chebyshev weight. As consequence, we refine estimates of the Nikolskii constant $\mathcal{L}(1)$ and find that
$$ 1.081<2\pi \mathcal{L}(1)<1.082. $$
To compare previous estimates were $1.081<2\pi \mathcal{L}(1)<1.098$.

Keywords: trigonometric polynomial, entire function of exponential type, Nikolskii constant, Chebyshev weight.

UDC: 517.5

Received: 05.06.2018
Accepted: 17.08.2018

DOI: 10.22405/2226-8383-2018-19-2-80-89



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024