RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2018 Volume 19, Issue 3, Pages 46–60 (Mi cheb678)

This article is cited in 3 papers

The Riemann hypothesis as the parity of special binomial coefficients

Yu. V. Matiyasevichab

a St. Petersburg Mathematical Society
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: The Riemann Hypothesis has many equivalent reformulations. Some of them are arithmetical, that is, thewy are statements about properties of integers or natural numbers. Among them the reformulations with the simplest logical structure are those from the class $\Pi_1^0$ from the arithmetical hierachy, that is, having the form "for every $x_1,\dots,x_m$ relation $A(x_1,\dots,x_m)$ holds", where $A$ is decidable. As an example one can take the reformulation of the Riemann Hypothsis as the assertion that certain Diophantine equation has no solution (such particular equation can be given explicitly).
While the logical structure of this reformulation is indeed very simple, all known methods for constructing such Diophantine equation produce equations occupying several pages. On the other hand, there are known other reformulation also belonging to class $\Pi_1^0$ but having rather short wording. As examples one can mention the criteria of the validity of the Riemann Hypothesis proposed by J.-L. Nicolas, by G. Robin, and by J. Lagarias. The shortcoming of these reformulations (as compared to Diophantine equations) consists in the usage of constants and funtions which are “more complicated” than integers and addition and multiplication sufficient for constructing Diophantine equations.
The paper presents a system of $9$ conditions imposed on $9$ variables. In order to state these conditions one needs only addition, multiplication, exponentiation (unary, with fixed base $2$), congruences and remainders, inequalities, and binomial coefficient. The whole system can be written explicitly on a single sheet of paper. It is proved that the system is inconsistent if and only if the Riemann Hypothesis is true.

Keywords: the Riemann Hypothesis, binomial coefficients.

UDC: 511.313:511.331.1:511.526

Received: 17.07.2018
Accepted: 10.10.2018

DOI: 10.22405/2226-8383-2018-19-3-46-60


 English version:
, 2022, 106:2, 256–261

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024