RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2018 Volume 19, Issue 4, Pages 118–176 (Mi cheb708)

This article is cited in 11 papers

On classical number-theoretic nets

I. Yu. Rebrovaa, V. N. Chubarikovb, N. N. Dobrovolskyc, M. N. Dobrovolskyd, N. M. Dobrovolskya

a Tula State L. N. Tolstoy Pedagogical University
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c Tula State University
d Geophysical centre of RAS

Abstract: The paper considers the hyperbolic Zeta function of nets with weights and the distribution of error values of approximate integration with modifications of nets.
Considered: parallelepipedal nets $M(\vec a, p)$, consisting of points
$$ M_k=\left(\left\{\dfrac{a_1k}{p}\right\}, \ldots, \left\{\dfrac{a_sk}{p}\right\}\right)\qquad(k=1,2, \ldots, p); $$
non-uniform nets $M (P)$, the coordinates of which are expressed via power functions modulo $P$:
$$ M_k=\left(\left\{\dfrac{k}{P}\right\},\left\{\dfrac{k^2}{P}\right\} \ldots, \left\{\dfrac{k^s}{P}\right\}\right)\qquad(k=1,2, \ldots, P), $$
where $P=p$ or $P=p^2$ and $p$ — odd prime number;
generalized uniform nets $M (\vec n)$ of $N=n_1\cdot\ldots\cdot n_s$ points of the form
$$ M_{\vec k}=\left(\left\{\dfrac{k_1}{n_1}\right\},\left\{\dfrac{k_2}{n_2}\right\} \ldots, \left\{\dfrac{k_s}{n_s}\right\}\right)\quad(k_j=1,2, \ldots, n_j\, (j=1,\ldots,s)); $$

algebraic nets introduced by K. K. Frolov in 1976 and generalized parallelepipedal nets, the study of which began in 1984.
In addition, the review of $p$-nets is considered: Hammersley, Halton, Faure, Sobol, and Smolyak nets.
In conclusion, the current problems of applying the number-theoretic method in geophysics are considered, which require further study.

Keywords: hyperbolic Zeta function of nets with weights, classical number-theoretic nets.

UDC: 511.3

Received: 23.07.2018
Accepted: 22.10.2018

DOI: 10.22405/2226-8383-2018-19-4-118-176



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025