RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2019 Volume 20, Issue 1, Pages 224–247 (Mi cheb729)

On a bounded remainder set for $(t,s)$ sequences I

Mordechay B. Levin

Department of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel

Abstract: Let $\mathbf{x}_0,\mathbf{x}_1,\dots$ be a sequence of points in $[0,1)^s$. A subset $S$ of $[0,1)^s$ is called a bounded remainder set if there exist two real numbers $a$ and $C$ such that, for every integer $N$,

$$ | \mathrm{card}\{n <N \; | \; \mathbf{x}_{n} \in S\} - a N| <C . $$

Let $ (\mathbf{x}_n)_{n \geq 0} $ be an $s-$dimensional Halton-type sequence obtained from a global function field, $b \geq 2$, $\mathbf{\gamma} =(\gamma_1,...,\gamma_s)$, $\gamma_i \in [0, 1)$, with $b$-adic expansion $\gamma_i= \gamma_{i,1}b^{-1}+ \gamma_{i,2}b^{-2}+...$, $i=1,...,s$. In this paper, we prove that $[0,\gamma_1) \times ...\times [0,\gamma_s)$ is the bounded remainder set with respect to the sequence $(\mathbf{x}_n)_{n \geq 0}$ if and only if
\begin{equation} \nonumber \max_{1 \leq i \leq s} \max \{ j \geq 1 \; | \; \gamma_{i,j} \neq 0 \} < \infty. \end{equation}
We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter sequences and Niederreiter-Xing sequences.

Keywords: bounded remainder set, $(t,s)$ sequence, Halton type sequences.

UDC: 510

Received: 09.01.2019
Accepted: 10.04.2019

Language: English

DOI: 10.22405/2226-8383-2018-20-1-224-247



© Steklov Math. Inst. of RAS, 2025