RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2019 Volume 20, Issue 2, Pages 156–168 (Mi cheb759)

This article is cited in 1 paper

On a generalized Eulerian product defining a meromorphic function on the whole complex plane

N. N. Dobrovol'skiia, M. N. Dobrovol'skiib, N. M. Dobrovol'skiic

a Tula State University (Tula)
b Geophysical centre of RAS (Moscow)
c Tula State L. N. Tolstoy Pedagogical University (Tula)

Abstract: The paper studies the Euler product of the form
$$ P_\pi(M,a(p)|\alpha)=\prod_{p\in P(M)}\left(1-\frac{a(p)}{p^{\alpha+\pi(p)}}\right)^{-1}, $$
where $M$ is an arbitrary monoid of natural numbers formed by the set of primes $P(M)$.
Another object of study is the Dirichlet series of the form
$$ f_\pi(M|\alpha)=\sum_{n\in M}\frac{1}{n^{\alpha +\pi(n)}}. $$

It turns out that they have completely different properties. The Dirichlet series $f_\pi (M| \alpha)$ defines a holomorphic function on the entire complex plane.
And the Euler product $P_\pi(M| \alpha)$ for a monoid $M$ whose set of primes $P(M)$ is infinite, sets on the entire complex plane a meromorphic function that has a countable set of special vertical lines, each of which has a countable set of poles.
In conclusion, the relevant problem of the zeros of the function $f_\pi(M|\alpha)$ is considered.

Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.

UDC: 511.3

Received: 18.05.2019
Accepted: 12.07.2019

DOI: 10.22405/2226-8383-2018-20-2-156-168



© Steklov Math. Inst. of RAS, 2025