RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2019 Volume 20, Issue 2, Pages 399–405 (Mi cheb780)

This article is cited in 2 papers

BRIEF MESSAGE

Trigonometric sums of nets of algebraic lattices

E. M. Rarova

Tula State L. N. Tolstoy Pedagogical University (Tula)

Abstract: The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the simplest weight function of the second order.
For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho_1} (\vec m)$, three cases are highlighted.
If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid
$$ S_{M(t),\vec\rho_1}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^2}\right). $$

If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved
$$ S_{M(t),\vec\rho_1}(t(m,\ldots,m))=\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{q(\vec{n}_\Lambda(\vec{m}))^2}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^2\ln^{s-1}\det \Lambda (t)}{ (\det\Lambda(t))^2}\right). $$


Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.

UDC: 511.3

Received: 18.03.2017
Accepted: 12.07.2019

DOI: 10.22405/2226-8383-2018-20-2-399-405



© Steklov Math. Inst. of RAS, 2024