This article is cited in
5 papers
Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type
D. V. Gorbachev,
I. A. Martyanov Tula State University (Tula)
Abstract:
Let
$0<p\le \infty$,
$\mathcal{C}(n;p;r)=\sup_{T}\frac{\|T^{(r)}\|_{L^{\infty}[0,2\pi)}}{\|T\|_{L^{p}[0,2\pi)}}$
and
$\mathcal{L}(p;r)=\sup_{F}\frac{\|F^{(r)}\|_{L^{\infty}(\mathbb{R})}}{\|F\|_{L^{p}(\mathbb{R})}}$
be the sharp Nikolskii–Bernstein constants for
$r$-th derivatives of
trigonometric polynomials of degree
$n$ and entire functions of exponential
type
$1$ respectively. Recently E. Levin and D. Lubinsky have proved that for
the Nikolskii constants
$$
\mathcal{C}(n;p;0)=n^{1/p}\mathcal{L}(p;0)(1+o(1)),\quad n\to \infty.
$$
M. Ganzburg and S. Tikhonov generalized this result to the case of
Nikolskii–Bernstein constants:
$$
\mathcal{C}(n;p;r)=n^{r+1/p}\mathcal{L}(p;r)(1+o(1)),\quad n\to \infty.
$$
They also showed the existence of the extremal polynomial
$\tilde{T}_{n,r}$ and
the function
$\tilde{F}_{r}$ in this problem, respectively. Earlier, we gave
more precise boundaries in the Levin–Lubinsky-type result, proving that for
all
$p$ and
$n$
$$
n^{1/p}\mathcal{L}(p;0)\le \mathcal{C}(n;p;0)\le (n+\lceil
1/p\rceil)^{1/p}\mathcal{L}(p;0).
$$
Here we establish close facts for the case of Nikolskii–Bernstein constants,
which also imply the asymptotic Ganzburg–Tikhonov equality. The results are
stated in terms of extremal functions
$\tilde{T}_{n,r}$,
$\tilde{F}_{r}$ and
the Taylor coefficients of a kernel of type Jackson–Fejer
$(\frac{\sin \pi
x}{\pi x})^{2s}$. We implicitly use Levitan-type polynomials arising from the
Poisson summation formula. We formulate one hypothesis about the signs of the
Taylor coefficients of the extremal functions.
Keywords:
trigonometric polynomial, entire function of exponential type, Nikolskii–Bernstein constant, Jackson–Fejer kernel, Levitan polynomials.
UDC:
517.5
Received: 24.09.2019
Accepted: 12.11.2019
DOI:
10.22405/2226-8383-2018-20-3-143-153