RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2020 Volume 21, Issue 1, Pages 62–81 (Mi cheb861)

This article is cited in 1 paper

On representation varieties of some one-relator products of cyclic groups

V. V. Beniash-Kryvetsa, A. N. Admiralovab

a Belarusian State University (Minsk)
b Limited Liability Company “SoftClub“ (Minsk)

Abstract: In the paper representation varieties of two classes of finitely generated groups are investigated. The first class consists of groups with the presentation
\begin{gather*} G = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g\mid\\ a_1^{m_1}=\ldots=a_s^{m_s}= x_1^2\ldots x_g^2 W(a_1,\ldots,a_s,b_1,\ldots,b_k)=1\rangle, \end{gather*}
where $g\ge 3$, $m_i\ge 2$ for $i=1,\ldots,s$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an element in normal form in the free product of cyclic groups
$$ H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast \langle b_k\rangle. $$

The second class consists of groups with the presentation
$$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$
where $p$ and $q$ are integer numbers such that $p>|q|\geq1$, $(p,q)=1$, $m_i\ge 2$ for $i=1,\ldots,s$, $g\ge3$, $U=x_1^2\ldots x_g^2W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an above defined element.
Irreducible components of representation varieties $R_n(G)$ and $R_n(G(p,q))$ are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety.

Keywords: a group presentation, a representation variety, a dimension of a variety, a rational variety.

UDC: 512.547

DOI: 10.22405/2226-8383-2018-21-1-62-81



© Steklov Math. Inst. of RAS, 2025