RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2020 Volume 21, Issue 1, Pages 259–272 (Mi cheb872)

This article is cited in 1 paper

Asymptotic structure of eigenvalues and eigenvectors of certain triangular Hankel matrices

Yu. V. Matiyasevichab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b St. Petersburg Mathematical Society

Abstract: The Hankel matrices considered in the article arose at one reformulation of the Riemann hypothesis proposed earlier by the author.
Computer calculations showed that in the case of the Riemann zeta function the eigenvalues and the eigenvectors of such matrices have an interesting structure.
The article studies a model situation when instead of the zeta function function one takes a function having a single zero. For this case we indicate the first terms of the asymptotic expansions of the smallest and largest (in absolute value) eigenvalues and the corresponding eigenvectors.

Keywords: Riemann zeta function, Riemann Hypothesis, Hankel matrices, eigenvalues, eigenvectors.

UDC: 512.643.5:512.643.8:511.331.1

DOI: 10.22405/2226-8383-2018-21-1-259-272


 English version:
, 2022, 106:2, 250–255


© Steklov Math. Inst. of RAS, 2024