RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2020 Volume 21, Issue 2, Pages 94–108 (Mi cheb898)

Mapping degrees between homotopy space forms

D. Gonçalvesa, P. Wongb, X. Zhaoc

a Dept. de Matemática – IME – USP, São Paulo (São Paulo, Brazil)
b Department of Mathematics, Bates College (Lewiston, U.S.A)
c Capital Normal University (Beijing, China)

Abstract: Let $\mathcal G$ be the family of periodic groups of period either $2$ or $4$, and $\bar\Sigma^m$ be a homotopy $m$-space form where $\pi_1(\bar\Sigma^m)\in \mathcal G$. For $m=3$, we study the set $D(\bar\Sigma_1^m, \bar\Sigma_2^m)$ of degrees of the maps from $\bar\Sigma_1^m$ to $\bar\Sigma_2^m$.

Keywords: Homotopy spherical space forms, mapping degrees.

UDC: 512.66+512.81+515.143

Received: 11.01.2019
Accepted: 11.03.2020

Language: English

DOI: 10.22405/2226-8383-2018-21-2-94-108



© Steklov Math. Inst. of RAS, 2024