RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2020 Volume 21, Issue 2, Pages 169–189 (Mi cheb903)

Gromov–Hausdorff distances to simplexes and some applications to discrete optimisation

A. O. Ivanovab, A. A. Tuzhilina

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University (Moscow)
b Bauman Moscow State Technical University (Moscow)

Abstract: Relations between Gromov–Hausdorff distance and Discrete Optimisation problems are discussed. We use the Gromov–Hausdorff distances to single-distance metric space for solving the following problems: calculation of lengths of minimum spanning tree edges of a finite metric space; generalised Borsuk problem; chromatic number and clique cover number of a simple graph calculation problems.

Keywords: Gromov–Hausdorff distance, minimum spanning tree, Borsuk problem, chromatic number, clique covering, metric geometry, discrete optimisation.

UDC: 514.7+519.17+519.8

Received: 08.12.2019
Accepted: 11.03.2020

Language: English

DOI: 10.22405/2226-8383-2018-21-2-169-189



© Steklov Math. Inst. of RAS, 2024