On the trigonometric sum modulo subdivision of the real axis
A. A. Artemov,
V. N. Chubarikov Lomonosov Moscow State University (Moscow)
Abstract:
The estimate of the trigonometric sum of the kind
$$ S=\sum_{a<t_s\leq b}e^{2\pi if(t_s)}, $$
where
$a\geq 0,a\leq b$ are real numbers,
$t_s$ is increasing to infinity of non-negative numbers,
$f(t)$ is a smooth real function, is found.
Here also there are proved the analogues of Euler's, Sonin's, Poisson's and van der Corput's formulas for considering sum.
Let be given the sequence of
$\Delta$ points
$$ 0=t_0<t_1<t_2<\dots<t_s<\dots, \lim\limits_{n\to\infty}t_n=+\infty, $$
on the positive half-axis of the real line.
For non-negative number
$x$ we define the analogue of the integer part
$[x]_{\Delta},$ meeting to the sequence
$\Delta: [x]_{\Delta}=t_s,$ if
$t_s\leq x<t_{s+1}, s\geq 0.$ The fractional part
$\{x\}_{\Delta}$ is defined by the equality
$$ \{x\}_{\Delta}=\frac{x-t_s}{t_{s+1}-t_s}, $$
if
$t_s\leq x<t_{s+1}, s\geq 0,$ moreover
$0\leq\{x\}_{\Delta}<1.$
We define the analogue of the Bernoulli function meeting to the sequence
$\Delta: \rho_\Delta(x)=0,5-\{x\}_\Delta.$
Then is valid the following analogue of the van der Corput's theorem for subdivisions.
Let $\Delta=\{t_s\}, 0=t_0<t_1<\dots<t_s<\dots, $
be a subdivision of the half-axis $t\geq 0$ of the real line, $\delta_s=t_{s+1}-t_s\geq 1, \delta(a,b)=\max\limits_{a\leq x\leq b}{\rho'_{\Delta}(x)},$
and let be given the sequence $\Delta_0=\{\mu_s\}, \mu_s=0,5(t_s+t_{s+1}), s\geq 0,$
and points $a,b\in\Delta_0,$ let, also,
$f'(x)$ be continuous, monotonic sign-constant in the interval $a< x\leq b,$ moreover there exists the constant $\delta$ such that $0<2\delta\delta^{-1}(a,b)<1$ and that for all $x$ from this interval is valid inequality $|f'(x)|\leq\delta.$ Then we have $$ \sum_{a<t_s\leq b}e^{2\pi if(t_s)}=\int\limits_{a}^{b}\rho'_\Delta(x)e^{2\pi if(x)} dx+10\theta\frac{\delta}{1-\delta\delta^{-1}(a,b)}, |\theta|\leq 1. $$
Keywords:
subdivision of the real axis, the trigonometric sum modulo subdivision, Van der Corput's theorem on replacing a trigonometric sum modulo subdivision to an integral, the Euler's, Sonin's, Poisson's summation formulas on points of subdivision.
UDC:
511.3
Received: 23.06.2020
Accepted: 22.10.2020
DOI:
10.22405/2226-8383-2018-21-3-18-28