RUS  ENG
Full version
JOURNALS // Chelyabinskiy Fiziko-Matematicheskiy Zhurnal // Archive

Chelyab. Fiz.-Mat. Zh., 2019 Volume 4, Issue 3, Pages 255–264 (Mi chfmj143)

Mathematics

On a Yang — Baxter operator and the corresponding knots invariant

K. S. Asaulkoa, F. G. Korablevab

a Chelyabinsk State University, Chelyabinsk, Russia
b N.N.\,Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Abstract: The paper is devoted to construction of a Yang — Baxter operator over two-dimensional vector space. Properties of the corresponding invariant of oriented knot and links are studied. An explicit form of the skein relation of this invariant is presented. It's proved, that this invariant is not a consequence of the HOMFLY polynomial. At the end of the paper the table of invariant's values for all oriented knots and links that admit diagrams with at most seven crossing points is given.

Keywords: Yang — Baxter operator, braid group, HOMFLY polynomial, knots invariant.

UDC: 515.162.8

Received: 19.08.2019
Revised: 14.09.2019

DOI: 10.24411/2500-0101-2019-14301



© Steklov Math. Inst. of RAS, 2024