RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2007 Volume 25, Pages 182–191 (Mi cmfd115)

This article is cited in 1 paper

An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration

A. P. Khromov

Saratov State University named after N. G. Chernyshevsky

Abstract: We suggest simple sufficient conditions on the kernel of the integral operator
$$ Af=\int\limits_0^{1-x}A(1-x,t)f(t)\,dt $$
providing expansion with respect to the root functions to be equiconvergent with ordinary Fourier series.

UDC: 513.88


 English version:
Journal of Mathematical Sciences, 2008, 155:1, 188–198

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025