RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2014 Volume 53, Pages 133–154 (Mi cmfd263)

On nonviscous solutions of a multicomponent euler system

V. V. Palina, E. V. Radkevicha, N. N. Yakovlevb, E. A. Lukashevb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Turaevo Machine-Building Design Bureau «Soyuz»

Abstract: We construct a nonstandard regularization for a multicomponent Euler system and obtain analogs of the Hugoniót condition and the Lax stability condition. We investigate the local accessibility problem for phase space points and construct dual bifurcations of one-front solutions of the truncated Euler system into two-front solutions.

UDC: 517.9


 English version:
Journal of Mathematical Sciences, 2016, 218:4, 503–525


© Steklov Math. Inst. of RAS, 2024