RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2016 Volume 59, Pages 148–172 (Mi cmfd291)

This article is cited in 1 paper

Quadratic interaction estimate for hyperbolic conservation laws: an overview

S. Modena

S.I.S.S.A., Via Bonomea 265, 34136 Trieste, TS, Italy

Abstract: In the joint work with S. Bianchini [8] (see also [6,7]), we proved a quadratic interaction estimate for the system of conservation laws
\begin{equation*} \begin{cases} u_t+f(u)_x=0,\\ u(t=0)=u_0(x), \end{cases} \end{equation*}
where $u\colon[0,\infty)\times\mathbb R\to\mathbb R^n$, $f\colon\mathbb R^n\to\mathbb R^n$ is strictly hyperbolic, and $\operatorname{Tot.Var.}(u_0)\ll1$ For a wavefront solution in which only two wavefronts at a time interact, such estimate can be written in the form
\begin{equation*} \sum_{\text{время взаимодействия }t_j}\frac{|\sigma(\alpha_j)-\sigma(\alpha'_j)||\alpha_j||\alpha'_j|}{|\alpha_j|+|\alpha'_j|}\leq C(f)\operatorname{Tot.Var.}(u_0)^2, \end{equation*}
where $\alpha_j$ and $\alpha'_j$ are the wavefronts interacting at the interaction time $t_j,$ $\sigma(\cdot)$ is the speed, $|\cdot|$ denotes the strength, and $C(f)$ is a constant depending only on $f$ (see [8, Theorem 1.1] or Theorem 3.1 in the present paper for a more general form).
The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simplified setting, in which:

UDC: 517



© Steklov Math. Inst. of RAS, 2025