RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2018 Volume 64, Issue 1, Pages 194–210 (Mi cmfd354)

Identifications for general degenerate problems of hyperbolic type in Hilbert spaces

A. Favinia, G. Marinoschib, H. Tanabec, Ya. Yakubovd

a Dipartimento di Matematica, Università di Bologna, Bologna, Italy
b Institute of Statistical Mathematics and Applied Mathematics, Bucharest, Romania
c Hirai Sanso 12-13, Takarazuka, 665-0817, Japan
d Raymond and Beverly Sackler School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

Abstract: In a Hilbert space $X$, we consider the abstract problem
\begin{align*} &M^*\frac d{dt}(My(t))=Ly(t)+f(t)z,\quad0\le t\le\tau,\\ &My(0)=My_0, \end{align*}
where $L$ is a closed linear operator in $X$ and $M\in\mathcal L(X)$ is not necessarily invertible, $z\in X$. Given the additional information $\Phi[My(t)]=g(t)$ wuth $\Phi\in X^*$, $g\in C^1([0,\tau];\mathbb C)$. We are concerned with the determination of the conditions under which we can identify $f\in C([0,\tau];\mathbb C)$ such that $y$ be a strict solution to the abstract problem, i.e., $My\in C^1([0,\tau];X)$, $Ly\in C([0,\tau];X)$. A similar problem is considered for general second order equations in time. Various examples of these general problems are given.

UDC: 517.956.3+517.983

DOI: 10.22363/2413-3639-2018-64-1-194-210



© Steklov Math. Inst. of RAS, 2024