RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2022 Volume 68, Issue 1, Pages 167–177 (Mi cmfd460)

Optimal difference formulas in the Sobolev space

Kh. M. Shadimetova, R. N. Mirzakabilovb

a Tashkent State Transport University, Tashkent, Uzbekistan
b Romanovskiy Institute of Mathematics, Tashkent, Uzbekistan

Abstract: Optimization of computational methods in functional spaces is one of the main problems of computational mathematics. In this paper, algebraic and functional assertions for the problem of difference formulas are discussed. For optimization of difference formulas, i.e., for construction of optimal difference formulas in functional spaces, an important role is played by the extremal function of the given difference formula. In this work, we explicitly find in Sobolev spaces the extremal function of the difference formula and compute the norm of the error functional of the difference formula. Furthermore, we prove existence and uniqueness of the optimal difference formula.

UDC: 517.962

DOI: 10.22363/2413-3639-2022-68-1-167-177



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024