RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2022 Volume 68, Issue 4, Pages 653–670 (Mi cmfd479)

Explicit solution of a Dirichlet problem in nonconvex angle

A. Merzona, P. Zhevandrova, J. E. De la Paz Méndezb, M. I. Romero Rodríguezc

a UMSNH, Morelia Michoacán, México
b Escuela Superior de Matemáticas N.2, UAGro, Cd. Altamirano Guerrero, México
c Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Bogotá Colombia

Abstract: In the present work, we give an explicit solution of the Dirichlet boundary-value problem for the Helmholtz equation in a nonconvex angle with periodic boundary data. We present uniqueness and existence theorems in an appropriate functional class and we give an explicit formula for the solution in the form of the Sommerfeld integral. The method of complex characteristics [14] is used.

Keywords: Helmholtz equation, nonconvex angle, Sommerfeld integral, method of complex characteristics.

UDC: 517.956.3+517.958

DOI: 10.22363/2413-3639-2022-68-4-653-670



© Steklov Math. Inst. of RAS, 2025