RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2024 Volume 70, Issue 1, Pages 1–14 (Mi cmfd525)

On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift

Yu. A. Alkhutova, G. A. Chechkinbcd

a Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
d Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia

Abstract: We establish the increased integrability of the gradient of the solution to the Dirichlet problem for the Laplace operator with lower terms and prove the unique solvability of this problem.

Keywords: Zaremba problem, Meyers estimates, embedding theorems, increased integrability.

UDC: 517.954

DOI: 10.22363/2413-3639-2024-70-1-1-14


 English version:
Journal of Mathematical Sciences, 2024, 286:1, 1–13


© Steklov Math. Inst. of RAS, 2025