RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2025 Volume 71, Issue 1, Pages 85–95 (Mi cmfd575)

Applications of the $s$-harmonic extension to the study of singularities of Emden's equations

L. Véron

Institut Denis Poisson, Université de Tours, Tours, France

Abstract: We use the Caffarelli–Silvestre extension to $\mathbb{R}_+\times\mathbb{R}^N$ to study the isolated singularities of functions satisfying the semilinear fractional equation $(-\Delta)^sv+\epsilon v^p=0$ in a punctured domain of $\mathbb{R}^N$ where $\epsilon=\pm 1$, $0<s<1$ and $p>1$. We emphasise the obtention of a priori estimates and analyse the set of self-similar solutions. We provide a complete description of the possible behaviour of solutions near a singularity.

Keywords: Emden's equation, semilinear fractional equation, Caffarelli–Silvestre extension, self-similar solutions.

UDC: 517.957

DOI: 10.22363/2413-3639-2025-71-1-85-95



© Steklov Math. Inst. of RAS, 2025