RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2025 Volume 71, Issue 1, Pages 125–146 (Mi cmfd578)

Local renormalized solutions of elliptic equations with variable exponents in unbounded domains

L. M. Kozhevnikovaab

a Sterlitamak Branch of Ufa University of Science and Technology, Sterlitamak, Russia
b Elabuga Institute of Kazan Federal University, Elabuga, Russia

Abstract: In this paper, we consider a second-order quasilinear elliptic equation with variable nonlinearity exponents and a locally summable right-hand side. The stability property is established and, as a consequence, the existence of a local renormalized solution of the Dirichlet problem in an arbitrary unbounded domain is proved.

Keywords: quasilinear elliptic equation, variable growth exponent, unbounded domain, Dirichlet problem, stability of solution, local renormalized solution.

UDC: 517.956.25

DOI: 10.22363/2413-3639-2025-71-1-125-146



© Steklov Math. Inst. of RAS, 2025