Abstract:
This article discusses a kinematic model of the problem of group pursuit of a set of goals. The article discusses a variant of the model when all goals are achieved simultaneously. In this model, the direction of the speeds by the pursuer can be arbitrary, in contrast to the method of parallel approach. In the method of parallel approach, the velocity vectors of the pursuer and the target are directed to a point on the Apollonius circle. The proposed pursuit model is based on the fact that the pursuer tries to follow the predicted trajectory of movement. The predicted trajectory is a compound curve. A compound curve consists of a circular arc and a straight line segment. The pursuer's velocity vector applied to the point where the pursuer is located touches the given circle. The straight line segment passes through the target point and touches the specified circle. The resulting compound line serves as an analogue of the line of sight in the parallel approach method. The iterative process of calculating the points of the pursuer's trajectory is that the next point of position is the point of intersection of the circle centered at the current point of the pursuer's position, with the line of sight corresponding to the point of the next position of the target. The radius of such a circle is equal to the product of the speed of the pursuer and the time interval corresponding to the time step of the iterative process. The time to reach the goal of each pursuer is a dependence on the speed of movement and the minimum radius of curvature of the trajectory. Multivariate analysis of the moduli of velocities and minimum radii of curvature of the trajectories of each of the pursuers for the simultaneous achievement of their goals is based on the methods of multidimensional descriptive geometry. To do this, the projection planes are entered on the Radishchev diagram: the radius of curvature of the trajectory and speed, the radius of curvature of the trajectory and the time to reach the goal. The optimizing factors are the set time for reaching the goal and the set value of the speed of the pursuer. This method of constructing the trajectories of pursuers to achieve a variety of goals at given time values may be in demand by the developers of autonomous unmanned aerial vehicles.
Keywords:multivariate analysis, Radishchev diagrams, target, pursuer, trajectory, radius of curvature.