Abstract:
The paper discusses the efficiency of converting radionuclide energy into electrical energy inside a semiconductor structure in the context of the betavoltaic application. In the molecular composition of Silicon Carbide semiconductor structures, Carbon-14 atoms functionally serve as the source of radiochemical decay energy, and the conductivity component of the n- or p-type semiconductor structure is able to directly convert this energy into electrical form. The proposed version of the beta-converter based on the C-14 radionuclide has a worldwide novelty, since this radionuclide is used in the concentration at the level of an alloying impurity that replaces the stable Carbon-12 atoms in the Silicon Carbide molecule. The presence in small quantities, one atom of the radioisotope C-14 per thousand or even a million atoms of the stable radioisotope C-12, gives the semiconductor material new energy-useful properties. The manifestations of the betavoltaic effect when replacing Silicon Carbide C-12 with radionuclide C-14 in a molecule determine the efficiency and choice of the contact formation options for practical use of charge generation in Silicon Carbide heterostructures.