RUS  ENG
Full version
JOURNALS // Computational nanotechnology // Archive

Comp. nanotechnol., 2024, Volume 11, Issue 2, Pages 58–85 (Mi cn482)

MATHEMATICAL MODELING, NUMERICAL METHODS AND COMPLEX PROGRAMS

Modification of a quantum-inspired genetic algorithm for numerical optimization using qudit under conditions of simulating quantum decoherence

V. V. Maslennikov, L. A. Demidova

MIREA – Russian Technological University

Abstract: The genetic algorithm for numerical optimization (GA) of the metaheuristic class is a method for finding optimal solutions based on the biological principles of natural selection and variability. GA is characterized by high operating speed, resistance to noise in the data, low probability of hitting the local extremum of the multimodal objective function, as well as the simultaneous application of probabilistic and deterministic rules for generating search space points. An alternative to the classical GA is the quantum-inspired genetic algorithm for numerical optimization (QIGA), which has advantages that are unattainable for GA by using the concepts and principles of quantum computing. The article proposes a new approach to the implementation of a quantum-inspired genetic numerical optimization algorithm for searching for the global maximum of the objective function, based on modeling the functioning of the GA by simulating the execution of quantum calculations based on qudit in the conditions of the existence of quantum decoherence in the era of noisy medium-scale quantum algorithms. For this purpose, to carry out quantum operations of rotating the states of multilevel quantum systems, the paper presents a density matrix based on Heisenberg–Weyl operators as an analogue of the Bloch sphere for qudits. The simulation of quantum decoherence is interpreted from the point of view of the influence of extraneous noise emanating from the environment on the qudit and is presented as the use of a normal random variable with zero mathematical expectation and unit variance in quantum gates. At the same time, the work presents detailed pseudocodes of the functioning of both the most modified quantum-inspired genetic algorithm for numerical optimization and its individual operations. Testing is carried out by conducting computational experiments with the implementation of a modified algorithm on two-dimensional and multidimensional functions of test optimization problems, as well as when solving an applied optimization problem of planning hybrid flow production in the manufacturing industry based on financial costs and solving the problem of increasing forecasting accuracy based on compact extreme learning machines. The experimental results demonstrate the superiority of the new algorithm over QIGA and classical optimization algorithms in the accuracy of the solution, the speed of convergence with the target value of the global maximum and the execution time of the algorithm.

Keywords: quantum-inspired algorithm, genetic algorithm, numerical optimization, qudit, Bloch sphere, density matrix, quantum superposition of states, quantum decoherence.

UDC: 004.023

DOI: 10.33693/2313-223X-2024-11-2-58-85



© Steklov Math. Inst. of RAS, 2024