Investigation of the influence of pulsed radiation generated by functional ceramics based on the principle of PTE on the characteristics of the Cr$_{2}$O$_{3}$-SiO$_{2}$-Fe$_{2}$O$_{3}$-CaO-Al$_{2}$O$_{3}$-MgO-CuO system
Abstract:
This work investigates methods for producing ceramic materials based on the Cr$_{2}$O$_{3}$-SiO$_{2}$-Fe$_{2}$O$_{3}$-CaO-Al$_{2}$O$_{3}$-MgO-CuO system capable of generating modulated pulsed radiation in the far-infrared spectral region. The possibility of synthesizing such ceramics, in addition to helio-technology, using thermomechanical processing and mechanoactivation of the initial carbonates is considered. A comprehensive analysis of the structure and properties of the obtained materials using X-ray structural, electron microscopic analysis, and other methods has been carried out. It has been established that activation by pulsed infrared radiation generated by the principle of pulsed tunneling effect (PTE) leads to changes in the microstructure of the samples, accompanied by the formation of metastable phases at the interfaces and the generation of radiation.