Abstract:
Quality assessment and artifact detection in functional magnetic resonance imaging (fMRI) data is essential for clinical applications and brain research. Subject head motion remains the main source of artifacts - even the tiniest head movement can perturb the structural and functional data derived from the fMRI. In this paper, we propose an end-to-end neural network technology for detecting step anomalies with training on partially synthetic data with adaptation to a specific small set of real data. A procedure for generating a synthetic dataset for training and a module for automated labeling of real data is developed. A recurrent neural network model for detecting step anomalies is proposed. A method for the model adaptation to a small set of real data based on one-step meta-learning is developed. An experimental verification of the accuracy is carried out in the problem of detecting step anomalies using a sliding window of 10, 15, and 24 pixels. The experiments have shown the proposed technology to provide the detection of stepwise anomalies with an accuracy of 0.9546.
Keywords:recurrent neural networks, anomaly detection, signal analysis, functional magnetic resonance imaging, meta-learning