Abstract:
In this work, an algorithm that makes decisions on whether or not an object under protection has been penetrated based on data from infrared (IR) sensors included in a wireless sensor system is considered. Based on theoretical considerations, methods for calculating the attenuation of infrared radiation by the medium, including attenuation due to molecular gases and aerosol attenuation, are presented. Peculiarities of the external environment impact on the functioning of local heat sensors are shown. Also, peculiarities of the noise immunity characteristics of a radio communication channel are considered with due regard for signal fading. With the purpose of analyzing the environment impact on the efficiency of the entire system, we present dependencies of the total error probability on the energy parameter, taking into account the attenuation of infrared radiation in both the environment at the level of local sensors and the radio communication channel. In addition, a dependence of the total error probability on the communication distance under the influence of fading is presented. The results arrived at are analyzed and the degree of influence of the environment on the quality of functioning of the wireless sensor system of thermal type is evaluated. It is shown that adverse weather conditions can have a significant impact on the efficiency of local sensors, and, hence the entire system. However, despite the possible significant deterioration in efficiency due to the IR signal attenuation in the medium and in the radio channel, the efficiency can be increased by increasing the number of sensors used.