Computer Research and Modeling, 2024 Volume 16, Issue 6,Pages 1433–1445(Mi crm1226)
ANALYSIS AND MODELING OF COMPLEX LIVING SYSTEMS
Numerical simulation of the dynamics of the density distribution of cellular tissue, taking into account the influence of chemotaxis and deformation of the extracellular matrix
Abstract:
In this paper, a mathematical model of cellular tissue dynamics is considered. The first part gives the conclusion of the model, the main provisions and the formulation of the problem. In the second part, the final system is investigated numerically and the simulation results are presented. It is postulated that cellular tissue is a three-phase medium that consists of a solid skeleton (which is an extracellular matrix), cells and extracellular fluid. In addition, the presence of nutrients in the tissue is taken into account. The model is based on the equations of conservation of mass, taking into account mass exchange, the equations of conservation of momentum for each phase, as well as the diffusion equation for nutrients. The equation describing the cellular phase also takes into account the term describing the chemical effect on the tissue, which is called chemotaxis — the movement of cells caused by a gradient in the concentration of chemicals. The initial system of equations is reduced to a system of three equations for finding porosity, cell saturation and nutrient concentration. These equations are supplemented by initial and boundary conditions. In the one-dimensional case, the distribution of porosity, concentration of the cell phase and nutrients is set at the initial moment of time. A constant concentration of nutrients is set on the left border, which corresponds, for example, to the supply of oxygen from the vessel, as well as the flow of cell concentration on it is zero. Two types of conditions are considered at the right boundary: the first is the condition of impermeability of the right boundary, the second is the condition of constant concentration of the cell phase and zero flow of nutrient concentration. In both cases, the conditions for the matrix and extracellular fluid are the same, it is assumed that there is a source of nutrients (blood vessel) on the left border of the modeling area. As a result of modeling, it was revealed that chemotaxis has a significant effect on tissue growth. In the absence of chemotaxis, the compaction zone extends to the entire modeling area, but with an increase in the effect of chemotaxis on the tissue, a degradation area is formed in which the concentration of cells becomes lower than the initial one.
Keywords:mathematical modeling, biological tissue, mass exchange, filtration, porosity