RUS  ENG
Full version
JOURNALS // Computer Research and Modeling // Archive

Computer Research and Modeling, 2015 Volume 7, Issue 2, Pages 205–219 (Mi crm180)

MATHEMATICAL MODELING AND NUMERICAL SIMULATION

Semiclassical approximation for the nonlocal multidimensionalfisher-kolmogorov-petrovskii-piskunov equation

E. A. Levchenkoa, A. Yu. Trifonova, A. V. Shapovalovb

a Laboratory of Mathematical Physics of Mathematical Ph ysics Department, Tomsk Polytechnical University, 30 Lenin ave., Tomsk, 634050, Russia
b Theoretical Physics Department, Tomsk State University, 36 Lenin ave., Tomsk, 634050, Russia

Abstract: Semiclassical asymptotic solutions with accuracy $O(DN/2), N \ge 3$ are constructed for the multi-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation are found in explicit form.

UDC: 517.9

Received: 27.01.2015

DOI: 10.20537/2076-7633-2015-7-2-205-219



© Steklov Math. Inst. of RAS, 2024