Abstract:
We obtain asymptotic equalities for upper bounds of the deviations of the right-angled de la Vallee Poussin sums taken over classes of periodical functions of many variables of high smoothness. These equalities guarantee the solvability of the Kolmogorov–Nikol’skii problem for the right-angled de la Vallee Poussin sums on the specified classes of functions.
Keywords:($\psi,\beta$)-derivative, the right-angled de la Vallee Poussin sums, Kolmogorov–Nikol'skiy problem.