RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2024 Volume 31, Issue 3, Pages 5–23 (Mi da1351)

This article is cited in 2 papers

Convex continuations of some discrete functions

D. N. Barotov

Financial University under the Government of the Russian Federation, 4 Chetvyortyi Veshnyakovskii Passage, 109456 Moscow, Russia

Abstract: We construct convex continuations of discrete functions defined on the vertices of the $n$-dimensional unit cube $[0,1]^n,$ an arbitrary cube $[a,b]^n,$ and a parallelepiped $[c_1,d_1]\times [c_2,d_2]\times\dots\times [c_n,d_n].$ In each of these cases, we constructively prove that, for any discrete function $f$ defined on the vertices of $\mathbb{G} \in \{[0,1]^n, [a,b]^n, [c_1,d_1]\times[c_2,d_2]\times\dots\times[c_n,d_n]\},$ first, there exist infinitely many convex continuations to the set $\mathbb{G}$, and second, there exists a unique function $f_{DM}\colon\mathbb{G}\to\mathbb{R}$ that is the maximum of convex continuations of $f$ to $\mathbb{G}$. We also show that the function $f_{DM}$ is continuous on $\mathbb{G}$. Bibliogr. 24.

Keywords: discrete function, convex continuation of a discrete function, Boolean function, pseudo-Boolean function.

UDC: 519.8+518.25

Received: 07.12.2023
Revised: 12.02.2024
Accepted: 22.03.2024

DOI: 10.33048/daio.2024.31.789


 English version:
Journal of Applied and Industrial Mathematics, 2024, 18:3, 412–423


© Steklov Math. Inst. of RAS, 2025