RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2024 Volume 31, Issue 3, Pages 54–78 (Mi da1353)

Perfect colorings of submatrix hypergraphs

S. O. Borodin, A. A. Taranenko

Sobolev Institute of Mathematics, 4 Koptyug Avenue, 4, 630090, Novosibirsk, Russia

Abstract: A submatrix hypergraph $G_{n\times m}$ is a hypergraph whose vertices are entries of an ${n\times m}$ matrix and hyperedges are submatrices of order $2.$ In this paper, we consider perfect colorings of submatrix hypergraphs and study their parameters. We provide several constructions of perfect colorings of $G_{n\times m}$ and prove that the incidence matrices of $2$-designs are perfect colorings of the submatrix hypergraph. Moreover, we describe all perfect $2$-colorings of hypergraphs $G_{2\times m}$ and $G_{3\times m}.$ Illustr. 1, bibliogr. 12.

Keywords: hypergraph, symmetric 2-design, perfect coloring.

UDC: 519.179.1+519.174.7

Received: 04.09.2023
Revised: 07.02.2024
Accepted: 22.03.2024

DOI: 10.33048/daio.2024.31.784


 English version:
Journal of Applied and Industrial Mathematics, 2024, 18:3, 424–440


© Steklov Math. Inst. of RAS, 2025