RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., Ser. 1, 2001 Volume 8, Issue 4, Pages 3–8 (Mi da227)

This article is cited in 10 papers

Perfect codes of complete rank with kernels of large dimensions

S. V. Avgustinovicha, F. I. Solov'evaa, O. Hedenb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Royal Institute of Technology

Abstract: We construct perfect codes of all admissible lengths $n>20^{10}-1$ of complete rank with kernels of all possible dimensions $K$ from $(n-1)/2$ to $U(n)$, which is the maximum possible. For every $k\in \{(n-1)/2,\dots,U(n)-2\}$, we construct such codes of length $n,31\leqslant n\leqslant 2^{10}-1$.

UDC: 519.72

Received: 25.07.2001



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025