RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2008 Volume 15, Issue 3, Pages 11–21 (Mi da530)

This article is cited in 3 papers

On mobile sets in the binary hypercube

Yu. L. Vasil'ev, S. V. Avgustinovich, D. S. Krotov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: If two distance-3 codes have the same neighborhood, then each of them is called a mobile set. In the $(4k+3)$-dimensional binary hypercube there exists a mobile set of cardinality $2\cdot6^k$ that cannot be split into mobile sets of smaller cardinalities or represented as a natural extension of a mobile set of smaller dimension. Bibl. 10.

Keywords: 1-perfect code, Bollean cube, mobile set, $i$-component.

UDC: 519.72

Received: 27.12.2007
Revised: 03.04.2008


 English version:
Journal of Applied and Industrial Mathematics, 2009, 3:2, 290–296

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025