RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2009 Volume 16, Issue 5, Pages 52–68 (Mi da587)

This article is cited in 2 papers

On nonexistence of some perfect 2-colorings of Johnson graphs

I. Yu. Mogilnykhab

a S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: A perfect coloring in $m$ colors of a graph $G$ with matrix $A=\{a_{ij}\}_{i,j=1,\dots,m}$ is a coloring of vertex set of $G$ in the set of colors $\{1,\dots,m\}$ such that the number of vertices of color $j$ adjacent to a fixed vertex of color $i$ does not depend on choice of the last vertex and equals $a_{ij}$. In this paper we obtain a low bound on parameter $a_{ij}$, $i\neq j$, of a perfect coloring of a Johnson graph in two colors. Also we show that some perfect colorings of Johnson graph in two colors do not exist. Bibl. 13.

Keywords: perfect coloring, completely regular code, Johnson scheme.

UDC: 621.391.15

Received: 15.05.2009



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025