RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2011 Volume 18, Issue 2, Pages 41–50 (Mi da645)

This article is cited in 5 papers

Stability radius bounds for the lexicographic optimum of the vector Boolean problem with Savage's risk criteria

V. A. Emelichev, V. V. Korotkov

Belarusian State University, Minsk, Belarus

Abstract: We consider a lexicographic Boolean problem of building an investor's portfolio of assets. The goal is to minimize risks using Savage's “bottleneck” (the worst-case regret) criteria. We obtained lower and upper attainable bounds for the stability radius of the lexicographic optimum of the problem in the case with octahedral metric $l_1$ in the portfolios space and Chebyshev metric $l_\infty$ in the risk and financial market conditions space. Bibliogr. 12.

Keywords: vector boolean problem, portfolio optimization, mimimax problem, lexicographic optimum, Savage's risk criteria, perturbation matrix, stability radius.

UDC: 519.8

Received: 13.09.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025