RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2012 Volume 19, Issue 1, Pages 17–32 (Mi da674)

This article is cited in 14 papers

Approximation algorithms for maximum-weight problem of two-peripatetic salesmen

E. Kh. Gimadiab, E. V. Ivoninaa

a S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We consider the problem of finding two edge-disjoint Hamiltonian circuits (salesman routes) on maximum total weight in a complete undirected graph. In the case of edge weights in the interval $[1,q]$ a polynomial algorithm with performance ratio $\frac{3q+2}{4q+1}$ is constructed. In the case of different weight functions valued 1 and 2 a polynomial algorithm with performance ratio $\frac{11\rho-8}{18\rho-15}$ is presented, where $\rho$ is a guaranteed ratio of an algorithm for solving similar problem on minimum. Ill. 1, bibliogr. 13.

Keywords: traveling salesman problem, 2-peripatetic salesman problem, polynomial algorithm, guaranteed approximation ratio.

UDC: 519.8

Received: 31.05.2011
Revised: 01.07.2011


 English version:
Journal of Applied and Industrial Mathematics, 2012, 6:3, 295–305

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025