RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2012 Volume 19, Issue 1, Pages 41–58 (Mi da676)

This article is cited in 23 papers

Enumeration of bent functions on the minimal distance from the quadratic bent function

N. A. Kolomeec

S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia

Abstract: Constructing bent functions on the minimal distance from the quadratic bent function is studied. All such bent functions in $2k$ variables are obtained and it is shown that the number of them is equal to $2^k(2^1+1)\dots(2^k+1)$. A lower bound of the number of bent functions on the minimal distance from a Maiorana–McFarland bent function is given. Tab. 1, bibliogr. 9.

Keywords: bent function, the minimal distance, quadratic bent function.

UDC: 519.7

Received: 05.04.2011
Revised: 24.09.2011


 English version:
Journal of Applied and Industrial Mathematics, 2012, 6:3, 306–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024