RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2013 Volume 20, Issue 3, Pages 3–25 (Mi da729)

This article is cited in 3 papers

Steiner triple systems of small rank embedded into perfect binary codes

D. I. Kovalevskayaa, F. I. Solov'evaab, E. S. Filimonovaa

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia

Abstract: Using the switching method, we classify Steiner triple systems $\mathrm{STS}(n)$ of order $n=2^r-1$, $r>3$, and of small rank $r_n$ (which differs by 2 from the rank of the Hamming code of length $n$) embedded into perfect binary codes of length $n$ and of the same rank. The lower and upper bounds for the number of such different $\mathrm{STS}$ are given. We present the description and the lower bound for the number of $\mathrm{STS}(n)$ of rank $r_n$ which are not embedded into perfect binary codes of length $n$ and of the same rank. The embeddability of any $\mathrm{STS}(n)$ of rank $r_n-1$ into a perfect code of length $n$ with the same rank, given by Vasil’ev construction, is proved. Bibliogr. 22.

Keywords: Steiner triple system, perfect binary code, switching, Pasch configuration, $ijk$-component, $i$-component.

UDC: 621.391.15

Received: 02.08.2012
Revised: 20.03.2013


 English version:
Journal of Applied and Industrial Mathematics, 2013, 7:3, 380–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025