Abstract:
Using the switching method, we give a classification of Steiner quadruple systems of order $N>8$ and rank $r_N$ (different by 2 from the rank of the Hamming code of length $N$) which are embedded into extended perfect binary codes of length $N$ and the same rank. Lower and upper bounds for the number of such different systems are provided. The lower bound and description of different Steiner quadruple systems of order $N$ and rank $r_N$ which are not embedded into extended perfect binary codes of length $N$ and the same rank are given. Tab. 4, bibliogr. 22.