RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2013 Volume 20, Issue 4, Pages 46–64 (Mi da739)

This article is cited in 1 paper

Steiner quadruple systems of small ranks and extended perfect binary codes

D. I. Kovalevskayaa, F. I. Solov'evaba

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia

Abstract: Using the switching method, we give a classification of Steiner quadruple systems of order $N>8$ and rank $r_N$ (different by 2 from the rank of the Hamming code of length $N$) which are embedded into extended perfect binary codes of length $N$ and the same rank. Lower and upper bounds for the number of such different systems are provided. The lower bound and description of different Steiner quadruple systems of order $N$ and rank $r_N$ which are not embedded into extended perfect binary codes of length $N$ and the same rank are given. Tab. 4, bibliogr. 22.

Keywords: Steiner quadruple system, extended perfect binary code, switching, $il$- and $ijkl$-components, rank.

UDC: 621.391.15

Received: 11.10.2012
Revised: 06.06.2013


 English version:
Journal of Applied and Industrial Mathematics, 2013, 7:4, 522–536

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024